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A family of Lagrangian stochastic models for the joint motion of particle pairs in 
isotropic homogeneous stationary turbulence is considered. The Markov assumption 
and well-mixed criterion of Thomson (1990) are used. and the models have quadratic- 
form functions of velocity for the particle accelerations. Two constraints are derived 
which formally require that the correct one-particle statistics are obtained by the 
models. These constraints involve the Eulerian expectation of the ‘acceleration’ of a 
fluid particle with conditioned instantaneous velocity, given either at the particle, or at 
some other particle’s position. The Navier-Stokes equations, with Gaussian Eulerian 
probability distributions, are shown to give quadratic-form conditional accelerations, 
and models which satisfy these two constraints are found. Dispersion calculations 
show that the constraints do not always guarantee good one-particle statistics, but it 
is possible to select a constrained model that does. Thomson’s model has good one- 
particle statistics, but is shown to havc unphysical conditional accelerations. 
Comparisons of relative dispersion for the models are made. 

1. Introduction 
The Lagrangian statistical description of turbulent dispersion dates back to Taylor 

(1921). Batchelor (1949, 1952) has extended those initial ideas, and related fluid particle 
dispersion to passive-tracer concentrations (see 5 3 ) .  Obukhov (1959) was the first to 
propose a stochastic differential (Langevin) equation to model dispersion of one 
particle in a homogeneous turbulent flow. Subsequently, many authors have sought to 
extend the one-particle stochastic-equation modelling technique to more complex flows 
(Sawford 1985; Sawford & Guest 1988) or to devclop a two-particle model (Novikov 
1963; Durbin 1980; Sawford & Hunt 1986; and Kaplan & Dinar 1989). Pope (1987) 
also gives an account of stochastic modelling of particle trajectories. Many of these 
attempts have been of an ad hoc or otherwise inadequate nature. Recently. Thomson 
(1987, 1990) and Pope (1994u, h)  have provided a much more comprehensive and 
rigorous approach to both one-particle and two-particle modelling. In this paper we 
propose to continue the development of Thomson’s (1990) approach regarding the 
two-particle dispersion problem. 

The models mentioned above have been developed explicitly for idealized forms of 
turbulence and have been only partially verified for real flows approximating these 
idealized situations. For example, Thomson (1990) developed a two-particle model for 
isotropic homogeneous decaying turbulence, generated concentration statistics 
numerically and compared these results with the wind-tunnel data of Warhaft & 
Lumley (1978). The comparisons are encouraging but do not test the model in detail. 
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For relative dispersion there are few other data with which to compare stochastic- 
model predictions directly, particularly in the extremely large Reynolds number range 
where such models are formally applicable. There are some direct numerical 
simulations of turbulence (Yeung & Pope 1989) from which Lagrangian quantities may 
be calculated, but these calculations are not yet of large enough Reynolds number for 
the comparisons to be unambiguous. Similarly, kinematic simulation of flow fields 
(Fung rt nl. 1992) is not yet sufficiently rigorous to clarify many of the questions we 
would like to answer. Because of this lack of suitable Lagrangian data for model 
verification, it is important to be as rigorous and objective as possible in the 
development of models and to incorporate known physical and mathematical 
properties properly. 

It is natural to begin with the simplest case and therefore we consider isotropic, 
homogeneous and stationary turbulence. It is also valid to ignore intermittency for the 
level of discussion attempted here (Borgas & Sawford 1991, 1994). 

The pivotal underlying assumption for our stochastic modelling is that in the 
velocity-displacement phase space, in which continuous trajectories describe the 
history of one or more particles, the random process which makes up that evolution 
is approximately Markovian (this approximation becomes better as the Reynolds 
number increases). Thus the future change in velocity is dependent solely upon the 
present velocity and position and not upon its history. This is a difficult proposition to 
prove from first principles. An elaborate asymptotic analysis by Borgas & Sawford 
(1991) and Borgas (1991) supports this view. However, only the necessary (but not 
suficient) condition that accelerations decorrelate rapidly with time, on a timescale 
that diminishes with increasing Reynolds number, is generally accepted. Nevertheless, 
we assume that the process is approximately Markovian. Sawford & Borgas (1994) and 
Borgas & Sawford (1994) consider in more detail non-Markovian aspects of the 
Lagrangian velocity-displacement properties of turbulence. 

Once the Markovian property is accepted, a particle at position x with velocity u at 
time t changes its position and velocity by increments which are solely functions of x, 
u and t and some independent random increment (see 92). Choosing a model consists 
of specifying ‘recipes’ for those functions. The approach of Thomson (1987, 1990) is 
to specify the models in terms of given Eulerian velocity statistics, via the probability 
distribution of the random velocity at x (or velocities at two points for two-particle 
dispersion). Typically this probability distribution is taken to be Gaussian, or perhaps 
a sum of several (suitably normalized) Gaussian distributions. Thus the Eulerian 
statistics are specified in practice by one- and two-point velocity structure functions 
which are common turbulence-field diagnostics. 

The importance of Thomson’s approach is that it ensures that when the material 
distribution is uniform, the model equations are satisfied by Eulerian flow statistics. 
This also ensures that the model does not artificially un-mix material and (in the two- 
particle case) does not generate spurious concentration variance in the absence of 
gradients in the mean concentration. 

A further assumption that has been implicit in the modelling is that the energy- 
dissipation rate per unit volume, 6 ,  which is a random variable locally (the spatial 
average of the energy-dissipation rate is a fundamental fixed parameter for any steady- 
state situation) is non-intermittent (Monin & Yaglom 1975). Novikov (1989, 1990), 
Yeung & Pope (1989), Pope & Chen (1990), and Borgas (1991, 1993) consider the 
implications intermittency has for Lagrangian statistics, and Borgas & Sawford (1994) 
analyse the impact upon stochastic models and the Markov property. In particular, it 
is shown that for one-particle dispersion the effects of intermittency make the 
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displacement p.d.f. non-Gaussian, but that this effect is so slight that it could not be 
detected in experiments. Overall, the results from non-intermittent Lagrangian 
stochastic models, which are employed for the remainder of this paper, are largely 
unaffected by the small-scale intermittency of turbulence, and may be regarded as 
capturing the leading-order contribution to dispersion (especially for the first few 
moments). 

Despite the objectivity and relative rigour of Thomson’s approach there still remain 
problems which we attempt to address in this paper. Perhaps the major problem is that 
Thomson’s procedure does not yield a unique result, i.e. there may be many models 
which are consistent with the specified Eulerian statistics and at present there is no 
objective way to choose between these models. This was confirmed by numerical 
calculations for the one-particle case in inhomogeneous turbulence by Sawford & 
Guest (1988). Here we show that this non-uniqueness is non-trivial for the two-particle 
problem even for the simplest possible turbulence field : homogeneous and isotropic 
turbulence. In particular, in 94 we obtain specific forms of the model under the 
assumption of Gaussian Eulerian velocity statistics. We demonstrate, both mathe- 
matically and numerically, that the specification of the models is incomplete and that 
they are therefore not unique. In 5 5 the non-uniqueness of the models is considered in 
greater detail and a general family of models is found. One of these is the model 
presented by Thomson (1990). 

A second problem with the model presented by Thomson (1990) is that one-particle 
statistics (obtained by averaging over the second particle) are not consistent with those 
obtained from the one-particle model for homogeneous isotropic turbulence (which we 
prove is unique). Whether or not these differences are significant in practical terms, 
such a situation is clearly fundamentally wrong. In 36 we formulate a principle, called 
‘ two-to-one reduction’ requiring consistency between these two sets of one-particle 
statistics. We are thus able to generate further mathematical constraints on the two- 
particle models and use these constraints to distinguish objectively among the various 
possible models. These constraints are derived in general, in particular avoiding the 
restriction to Gaussian Eulerian velocity statistics ; however, the precise implications of 
Gaussian statistics are considered in greatest detail. 

Wc implement the two-to-one reduction and test its efficacy by numerical calculation 
in 37. Surprisingly, although Thomson’s model fails to satisfy our constraints it 
performs well in the numerical tests (prediction of the one-particle velocity variance 
and dispersion) which we apply. However, a new model is found which is formally 
better and which satisfies some dynamical constraints (conditional pressure gradients) 
imposed by the Navier Stokes equations and the form of the Eulerian statistics. This 
model is the first two-particle stochastic model to make use of this dynamical 
information, and differs from Pope’s (1985) application of such ideas. Furthermore, 
the dynamical constraints show that the family of models that we consider explicitly is 
the natural family for Gaussian Eulerian statistics. While this family, and Gaussian 
Eulerian statistics, are primarily used for mathematical convenience, the comparison 
with the most significant historical benchmark (Thomson 1990) also requires this 
approach. 

2. Background on one-particle stochastic equations 
According to the Markov assumption, trajectories of independent fluid particles in 

a turbulcnt flow can be modelled by the stochastic differential equations (Thomson 
1987, 1990) 

duf = ~ , ( u , x ,  t)dt+(C,e)1’2dT/t: 
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and dx, = u,dt, (2.2) 

where u is the particle velocity, x is the particle displacement and d W is white noise 
with correlation 

( d y ( t )  d q ( t + + ) )  = CE,,S(T) dtd(t+T). (2 .3)  

The coefficient (C, c): ensures that the Lagrangian velocity structure function satisfies 
Kolmogorov’s scaling in the inertial range, i.e. 

(du,(t) du,(t)) = at, C, e dt. 

t is a parameter which describes the mean rate of energy dissipation in the flow while 
C, is a universal constant so that, in principle, (2.1) is applicable to all forms of 
turbulence for one empirically determined value of C,. The undetermined function a 
may depend upon E and rr (the r.m.s. turbulent velocity fluctuation) as well as the 
arguments shown explicitly. To model turbulent dispersion correctly, the proper choice 
for a must be made. 

Equations (2.1) and (2.2) are equivalent to the Fokker Planck equation: 

where PL = PL(u, x, t ;  u,, x,, to) is the joint probability density for the velocity and 
position of a particle given its velocity, u,, and position, x,, at time to. We have assumcd 
that the fluid is incompressible, i.e. au,/dx, = 0, but compressibility and variable 
density can be accommodated (Thomson 1987, 1990). The subscript L indicates that 
the probability is Lagrangian. Alternatively, if we take an ensemble average of PI> over 
an Eulerian (unbiased) distribution of initial states, the Eulerian probability 
distribution of velocities, PE(u; x, t ) ,  results, i.e. 

Since the Fokker-Planck equation (2.4) is linear in PL, it is also satisfied by PE. Nou7 
PE may be considered as a prescribed property of the turbulence, and therefore 
constrains a through (2.4). For example, suppose that the turbulence field is 
homogeneous, isotropic and stationary, then PE is independent of x and t. Equation 
(2.4) (with P , )  can then be solved for ai to give 

1 (?PE 
PE aui l ‘  

ai = +C,e---+qi. (2.5) 

Equation (2.5) has been described as the ‘well-mixed’ criterion by Thomson (1987, 
1990), and is absolutely essential for the successful simulation of ensembles of particle 
trajectories. It ensures, for example, that an initially well-mixed distribution of material 
is not ‘un-mixed’ by the action of the turbulence. The vector 4, where 

is included for completeness and shows that (2.5) is, in general, not a unique 
representation of a. 
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However, if we calculate the ensemble average of the conditional 'acceleration' of 
a particle (for all flows with u = u, a given constant velocity vector at a given position 
x at a given time t )  then it follows from (2.1) that 

It follows from isotropy and homogeneity that 

a,(u) = V(t.)u,, 

for some function V(c), where c2 = u3 I J ~ .  This form ensures that the mean acceleration 
\/ector is independent of rotations and reflections of coordinate space (isotropy) and 
translations of the coordinate space origin (homogeneity). Because of (2.5), we must 
also have 

and therefore that 
PE $ 1  = $ ( L l )  0, 

+'+3c-l$ == 0; 

$&(?I) = Pi1 r K 3  u,. 

thus a definite form for qht emerges: 

(2.6) 

It is straightforward to see that only when the constant vanishes can (2.5) and (2.6) 
represent a suitable form (consider either u+-0 or m).? Thus a relatively simple 
determination of the appropriate stochastic equation is possible in this case. The 
further assumption that 

finally gives the appropriate version of (2.1) as 

du; - (kc,, €6') ui dt + (C,, R ) ~ ' ~  d y .  (2.8) 

Note that the non-stationary case also yields a unique specification of at provided that 
the flow is both isotropic and homogeneous. 

When solving (2.8), the usual initial condition is that the velocity u, is chosen 
randomly so that the probability distribution is PE(uo). It is possible then to solve the 
linear system (2.8) and (2.2) exactly, to give the Lagrangian probability distribution for 
position (averaged over all initial velocities) 

(2.)-3/2 
PJ, = exp (-;(-xi - x,(O)) qj(xj  - xj(0))), 

where 

with t ,  = 2a2/(C0e) and 9 = 191, the determinant of 9. 

t If P, falls off algebraically for large u then it must do so faster than z:-' so that the kinetic energy 
is bounded. However. in such situations a,$ would increase faster than u2 with large u. Gardiner (1983) 
points out that such models have the velocities accelerating to infinity in finite time which is 
unacceptable. 
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Equation (2.9) is a well-known result of turbulence theory (Taylor 1921), and has 
been obtained independently of the formulation presented here. The point to note is 
that isotropy, homogeneity and knowledge of the Eulerian PE, fully determine a, and 
therefore allow the calculation of the Lagrangian properties and thus dispersion. 
However, while this happens in this special case, it is not generally so for 
inhomogeneous turbulence. Further work is required for the determination of 4 in 
more complex situations and this is yet to be done. 

3. Two-particle statistics 
We are particularly interested in the generalization of the system in $2 to involve 

joint trajectories of particle pairs. The Lagrangian statistics allow higher-order 
moments of dispersion statistics to be determined. For example, if Y ( x J  gives the 
initial concentrationt of some passive marker with very small molecular diffusivity 
then for subsequent times the concentration-field structure is given by 

(%(x) V(X + A ) )  = Y (x,) Y (x;) PL(x, x + d, t ;  x,, x;, to) d3 X, d3 x;, I 
s 

where Pr, is shown by its arguments to be the joint probability distribution for the 
position of both particles. Consequently, the mean-square concentration is 

(% ‘(x)) = SP (x,) Y (x;) PL(x, X, t ;  x,, x;, I,) d3 X, d3 xi. 

The validity of this formula for mean-square concentration is discussed by Durbin 
(1980) and more recently by Thomson (1990) and is based on the limit in which the 
molecular diffusivity of the marker vanishes so that the dispersion due to turbulent 
advection dominates. This limiting procedure also allows us to neglect explicit viscous 
effects, i.e. we envisage a formal limit of large Reynolds number, Re-tm, and we 
restrict our two-particle models to particle separations greater than the Kolmogorov 
microscale, 11 = L (Borgas & Sawford l991), where L is a lengthscale of the 
turbulence, say r 3 / e .  

For the two-particle problem we hope to emulate the results of $2, i.e. find 
appropriate stochastic equations for trajectories based on Eulerian statistics and then 
to provide solutions for PL. The two-particle problem is conveniently represented using 
six-dimensional vectors, u and x, where the first three components refer to particle one, 
the latter three to particle two. It is then possible to represent the Markov process 
exactly as in (2.1) and (2.2). The Fokker-Planck equation also has the same form as 
(2.4). Specific differences emerge because the two-point Eulerian statistics, even for 
stationary, homogeneous and isotropic turbulence, depend on the separation of the 
fixed sampling points. Thus explicit dependence on the spatial coordinates is 
introduced, and we now write 

where d = x(”-x(~) is a three-dimensional vector giving the separation of the points 
x(’) and x ( ~ )  in physical space. To avoid ambiguity where the same symbols are used to 
represent both three- and six-dimensional vectors, the former are often written with 
superscript particle labels (as done above for particles ‘one’ and ‘two‘). In other cases, 
the dimensionality will be clear from the context. 

t Concentration is defined as the ‘amount’ of material within some fixed small volume Px 
surrounding the point x. For any finite volume there are effectively many fluid particles contained 
within, i.e. the test volume for defining concentration is assumed much larger than the idealized fluid 
particles whose trajectories we simulate. 

pE(u; x) = PE(U ; 4, 
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That PE depends non-trivially upon separation can be seen by considering the 
Eulerian velocity covariances : 

where 
and 

with 

(3.1 u)  

(3.1 h) 
(3.1 c) 

(3.ld) 

The notation developed above will also be useful in other contexts; since the higher- 
order vector spaces we consider are integer multiples of three, it is possible to represent 
an mth-order tensor in n x 3 dimensions as an mth-order block tensor in n dimensions 
whose nm elements are all three-dimensional tensors. Note that while i a n d j  are indices 
from the set { 1,2,. . . ,6), the indices with ’or ” superscripts are either 1, 2 or 3: defined 
as i = i‘ if i < 3 or i“ = i-3 if i > 3 and so forth. 

The functionsf(d) and g ( A )  are known to be non-trivial (Batchelor 1953) but have 
been measured experimentally and are therefore, for our purposes, supposed known. 
Note that continuity requires that 

(3.2) 
g(d) = f ( A ) + $ A - .  df 

d A  

Furthermore, for the purposes of calculation we will use the simple parameterized form 

for some lengthscale 9. This has many useful properties (which are discussed below) 
and has been used extensively in the past (Durbin 1980; Thomson 1990). It is possible 
to estimate 9 by following Thomson (1990) : calculating the integral lengthscale, 

and using the empirical fact (Townsend 1976, pp. 61) that 
2’ z g3c = L (say). In the inertial sub-range (d -g L), (3.3) takes the form 

;4: 0 .88C ’  suggests that 

where the Kolmogorov constant C is given by 2(L/L?)2’3 % 2,  in accord with 
measurement (Monin & Yaglom 1975, pp. 485). 

An implicit property of (3.1 a)  and (3.1 h) is the two-to-one reduction which says that 
ensemble averages of quantities dependent solely on particle one should be equivalent 
to the one-particle results briefly outlined in $2. Therefore the ensemble average of ulf’ 
us1’, as given in (3.1 a), is independent of A and follows directly from (2.7). More 
extensive use of the two-to-one reduction will be outlined below. 

Because of the dependence of PE on the separation A ,  4 must satisfy the Eulerian 
constraint 
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However, # is still not determined uniquely since an arbitrary divergence-free vector in 
six-dimensional u-space may be added to PE 4 without affecting (3.4). The two-particle 
stochastic equation for velocity increments now has the form 

du;’) = -fC ~r-log c? (PE(u. A ) )  dt+ 9, (u, d ) d t +  (C, c)1’’dW,(2’, J (3.5) 
?u, 

which differs from the former Langevin equation because of the A-dependence of the 
coefficient of the terms linear in velocity, because of the cross-dependence of particle 
one’s velocity increment on the velocity of particle two, and because of the non-trivial 
(and non-unique) #-function. 

Invoking isotropy, homogeneity etc. is of less utility in the two-particle case because 
ensemble averages generally depend on a trio of three-dimensional vectors : u(’),  u(‘j 
and d. From these a total of six independent scalars can be formed, and the averages 
will generally depend on all of them. Thus the general form of u:?’ is 

where 

for each n. It will be shown that the imposition of isotropy through forms like (3.6) is 
not sufficient to define a, uniquely. There is little to be gained by introducing these 
reduced forms at this stage and we continue for the present with the general tensor 
notation. 

Note that (3.5) and (3.6) encapsulate the dependence of the motion of particle one 
on that of particle two. We show in 46 and Appendix A that (3.6) is consistent with the 
mean acceleration calculated from the Navier-Stokes equation. Alternative two- 
particle models (e.g. Kaplan & Dinar 1989; Novikov 1963), in which a:? is required to 
be independent of u!? and A,., are consistent with this trivial mean acceleration only 
when the particle motions are independent of each other. 

A simple assumption, which permits some general progress, is that the two-point 
Eulerian probability distribution is Gaussian; therefore PB is fully determined by the 
velocity covariances since the average velocities all vanish. While it is certainly the case 
that the distribution is non-Gaussian in real turbulence, with the relative velocity field 
skewed for example, for our purposes the simple model is adequate. This is because the 
assumption is primarily used to derive an example of a stochastic equation to compare 
with Thomson’s (1990) equation, where the same conditions apply. In addition, results 
are derived later for general forms of PE so that the assumption does not limit us at all, 
although whenever a definite example is discussed we restrict ourselves to the Gaussian 
PE case. 

a;?’ = u:?’ +,ue 1/12’ +,us Ai,, (3.6) 
= /,&(A, ui!’uj?’, l r j? ’uy ,  zl;?’u;?), A?. u;?, A?. Z p )  

Supposing that the velocity covariance is written 

( ui U j )  = cT?&’, 

PE = h1’2(2nv)-3 exp ( -&-2ui  Ail u j ) ,  

with the superscript minus one indicating the elements of the inverse of a, it follows 
that 

(3.7) 
where the index summation (both i andi) runs from 1 to 6 and A = IAI (the determinant 
of A) .  In the sense of (3.1) we write 
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where care is needed because there is no explicit differentiation between tensors in 
three- or six-dimensional space in this notation. The three-dimensional tensors are 
interrelated by 

The block structure of the six-dimensional forms demonstrates a further necessary 
property of the two-particle modelling, which is that the labelling of particles is 
essentially arbitrary so that calling one particle 'one' and the other particle ' two' is 
equivalent to the converse labelling; in other words, the physics is unaltered by the 
choice of labelling. This is the case for the tensors above, as is indicated by the 
symmetry of A and I-', but this principle must be applied more generally to the modcl, 
particularly to the vector a. For the latter we must therefore have 

a = (6- pp)-' and p = - p( 6-  pp)-' = -pa. 

a ( l y u ( l ) ,  *('a), A )  = acs)(*("), *(1), - A ) .  (3.8) 

4. Quadratic-form models 
We now provide some examples of stochastic models satisfying Thomson's (1 990) 

well-mixed criterion for the case that PE is Gaussian. This serves a particularly 
important purpose because we are able to show explicitly that for given PE there is no 
unique mathematical model specified by (3.7) and, furthermore, we show by simulation 
that different models yield different practical results. Thus the non-uniqueness is 
demonstrated to be non-trivial. 

To solve (3.4) for Q with Gaussian PE, (3.3,  it is sufficient to consider a quadratic 
form in the velocity components u?, 

9, = 1: + Y a 7 k  uJ Ldk, 

for some unknown tensors r a n d  y. By equating coeficients of the 24, in (3.4). it follows 
that 

and - 

(4.1 a) 

(4.1 b)  

A simple solution of (4.1 a) is 

y . .  = - 
1)  k (4.2a) 

However, because of the summation in (4.1 a) it is possible to permute the indices 
cyclicly and find the alternative solutions 

and 

(4.2b) 

(4.2 c)  

Actually, any linear combination of the three solutions given above, such that the 
weights sum to one, is also a solution. 
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10 

lo-' 

I ' I ' I I l l ' I  

to 10-2 10-1 1 
tlt, 

FIGURE 1 .  Mean-square relative velocity incremcnt, ( d 2 )  = ((&I - u ! ~ ) ) ~ )  where d') = u - 110 

etc. is shown for two different stochastic models. Independcnt particlc motion is shown as the dashed 
line. Parameters are C, = 4. t = 1 ,  CT = I ,  A,, = 10P ( tu  = $), and 2 x lo4 particle-pair trajectories 
are simulated. 

From (4.16) it follows that for the first solution ( 4 . 2 ~ )  

while r, vanishes for both of the latter two solutions. Notice that these last results are 
equivalent to the average Eulerian acceleration vanishing, i.e. ( a }  = 0, which requires 

r, + a 2  yz31; A,: = 0, 

but has been arrived at without explicitly invoking that constraint. 
Notice also that the first solution ( 4 . 2 ~ )  is symmetric in the indicesj and k while the 

latter two (4.2h, c)  are not. Because the tensor yljk. appears in a as the combination 
yaJlc u3 up. only that part of y23,2 which is symmetric with respect to j and k is significant. 
This symmetry property will prove useful in $ 5  as it avoids some redundancy. Thus 
solutions (4.2 6) and (4.2 c) are essentially equivalent because the difference between 
them is antisymmetric with respect to the indices j and k. In fact. the solution obtained 
from the normalized sum. 

(4.3) 

which is symmetric i n j  and k,  is in some sense more fundamental. Solution (4.2c), or 
equivalently (4.3), was presented first by Thomson (1990). 

Without explicit consideration of the non-unique part of a, the solution we have 
sought has in any case illustrated the problem. Figure 1 shows results of numerical 
calculations with (3.5) for the mean-square relative velocity increments, ( ( ~ i ( ? )  - #))') 

separation of A ,  = using two models, (4.3) and (4.2a). The smallness of A ,  
where = ~ ( 1 ) -  u, (1) etc. The calculations were performed with C, = 4, and an initial 



Stochastic models for two-particle dispersion in turbulence 79 

10" 

10-8 I&, , I I I ,  8 I I I I I I , ,  I 1 
to 10-2 lo-' 1 

tlt, 

FIGURE 2. Mean-square relative displacement, ( A : )  = (($- z:?)~) where z ( I 1  = XI') - Xo (I1- *n ") t 
etc., is shown for parameters corresponding to figure 1 .  

ensures that the inertial range of turbulence is resolved (Borgas & Sawford 1991). 
These results show that the alternative models produce significantly different dispersion 
statistics. Both sets of results agree for very short times and very large times and differ 
most in the inertial sub-range. The inertial range for both models has the correct linear 
power-law dependence 

((a:') -a:'))') = %ef+O(t2) for to 4 t < t,, (4.4) 

but the constant of proportionality, %, is model dependent. The inner timescale, 
t ,  = ( A 3 t ) l i 3 ,  is much smaller than t ,  in all of our work. The stochastic models give 
different values for $? because of the different acceleration structure corresponding to 
different a-vectors. Moreover, these models differ from that obtained by assuming that 
particle-pair cross-accelerations are negligible (Novikov 1963), since then %? = 6C,. 
Details of the acceleration structure are given later. 

Mean-square separation increments, which are of considerable practical concern 
because of their relation to concentration fluctuations and the dispersion of clouds of 
material, are also model dependent, as shown in figure 2. Once again the inertial sub- 
range is of primary concern with 

( ( A ,  - A J )  = @er3 + 0 ( t 4 )  for t ,  < t 4 t ,  (4.5) 

having a model-dependent coefficient %?, which in general differs from the negligible- 
crowacceleration case, ce" = 2 ~ , .  

There are no exact results for the values of the inertial sub-range constants %? and Le" 
and no reliable measurements. All estimates involve (sometimes obscure) closure 
assumptions. For example, Fung et al. (1992) use a kinematic simulation of randomly 
forced Fourier modes to represent a velocity field and find quite small values for %' and 
ce". Because these estimates cannot be regarded as definitive, we treat the values of these 
constants as unknown and hence cannot discriminate between various models on this 
basis. 
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5. Non-uniqueness: a family of models 
In this section we further extend the quadratic-form class of models corresponding 

to Gaussian PE. Only some of the quadratic-form solutions of (3.4) have so far been 
considered. It is useful to construct a general form of such quadratic solutions, of 
which ( 4 . 2 ~ )  and (4.3) are special cases. This is a convenient family to consider and 
later we shall see that there are dynamical reasons for the choice. For the present, we 
get an indication of what general procedures are required by examining this fairly 
broad general subset of all possible forms for a in an objective way. 

Setting 4 = J+J, where 6 corresponds to the quadratic form ( 4 . 2 ~ )  which we adopt 
as a ‘ reference ’ model, and 

the tensor coefficients, which depend upon A ,  are sought such that 

- 
$/ = r; + Y I j k  l l j  up ,  (5.1) 

Linear terms in the velocity are omitted because they are found to be trivial (i.e. vanish 
identically). Our aim therefore is to find the most general form of the tensor y i jk ;  it 
transpires that the structure is determined by just five arbitrary functions of A .  For the 
appropriate choice of thcse functions we can recover (4.3) from the general family. The 
details are given in the remainder of the section, and while these details are essential 
for the technical calculations, it is not necessary to understand them to proceed with 
the remainder of the work. 

Using dP,/au, = - A,,i uj PE/g2, the ‘ solenoidal’ property is equivalent to two 
independent equations : 

and 

4 j  Y i l m  Uj ui um = 0 (5.2) 

- yijk(tj i j  up + t j ik u j )  + ri hij Llj g-2 = 0. (5.3) 

Q j j n  + Q k i j  + Q i p i  = 0 V i, j and k .  (5.4) 

- 

Now let hi jy i lnr  = L?jjlmr whereupon (5.2) gives 

Here we have already used symmetry in the second two indices of Qiik, j and k .  At this 
point it is necessary to consider the ‘block’ structure of Dijk using again the notation 
of (3.1). It is also useful to corrupt some of the former notation such that superscript 
indices in braces simply differentiate between the eight sub-tensors which constitute 
Qtjk  : 

a$,.; n;::j,k:.; 52;+.& 52 k‘; figv; 52$!l!,k#; q?Jk”; n!,y,,., (5.5) 

where the range of the indices is prescribed in (3.1) and, for example, the fourth tensor 
listed has i > 3 , j  > 3 but k < 3 .  The sub-tensors are not all independent and symmetry 
properties must be satisfied. For example, particle-labelling symmetry requires 

k ,  = - ot?Jk,; Q!?), , = -Q{.7i . 
t i  k 7 j‘k’ ’ 

Q(”‘ - and 52 
t’ j ’k’ - 

The minus signs arise because each of the sub-tensors is an odd function of A which 
follows from isotropy and d t - d  upon labelling reversal (cf. (3.8)). 

Furthermore, from the symmetry 

Oijk = Qikj ,  
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it follows that all the tensors except Qi$k, and C?!4],kr, are likewise symmetric in the latter 
two indices, while for those exceptions 

o(?j, ., = -Q,% 
P I  h f ’k ’ j ‘ ’  

Thus the symmetries greatly reduce the number of unknown quantities. In addition, 
substituting the sub-tensors into (5.4), results in eight equations, of which two are 
independent : 

12~.~,lc, +L?F,i.,j, + Q,\?Ljf, = 0 V i’, j’ and k’ (5 .6a)  

and + Q ~ { , j ; - Q ~ ~ , i ,  = 0 ’d i’, f and k’. (5.6b) 

Finally, isotropy implies that 

where the coeficients are functions of A .  For those tensors which are symmetric, i.e. 
i = 1, 2, we have (?!ii = biii. In conjunction with ( 5 . 6 ~ ~ )  and (5.6b), (5.7) implies that 
- Aili = 0.  Bl} + 2@1) = 0; 3 2 1  + 2 ( 3  = 0 .  2 2 )  + 22{31 = 0; j ’ 3 ’  + 2 2 :  + = 0. 

(5.8) 

Therefore, the arbitrariness of the quadratic-form family reduces to five unknown 

Hence further non-trivial quadratic-form modifications to the solutions we have 
already obtained are possible. It can be shown that when considered in the form 
qtTk uj uk (which is how the terms contribute to a) the new terms are a linear combination 
of vectors in the directions dl), u(’) and A ,  and the coefficients are functions of the 
scalars ubl)ull), uj2)ui(2), ui1)ui2), A ,  A [  ujl) and At ui2) ,  exactly as required by isotropy (cf. 
(3.6)). Solutions (4.2) and (4.3) are, of course, also consistent with isotropy. 

By definition, the reference model (4.20) is a member of the quadratic-form family 
of models: given by z{2j, El1), @), el2; and all zero. Likewise, Thomson’s model 
(4.3) can also be represented by (5.1) with 

functions of A :  2 2 1 ,  $11, B2‘ c{21 and fi(a), 

CW L = - _  1(1+g2)g/ -_  1 ( f + g l f ’  I f ’  
4 (1 -g2)>“ 8(1 -f’)(l -g2)+8(1 +,#)(l +g) ’  

Note that, because the Eulerian constraint (3.4) is linear, the family of solutions Cp (the 
fuil solution Cp = 4+&) is closed under the addition operation. 

6. Two-to-one reduction 
Given that the stochastic models are non-unique according to (3.4), it is necessary 

to consider further criteria for their selection and specification. That is the purpose of 
this section, and we restore generality to PE for the discussion. Consequently, the 
models are also allowed to be more general than the quadratic-form family considered 
earlier. 
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1.1 

1 QQQQG Model (4.3) 
A a n D A  Model (4.2 u)  

- Correct value 
~ Y536 confidence level 

A useful test of two-particle models is their ability to generate appropriate one- 
particle statistics. For example, suppose that we have a large ensemble of particle-pair 
trajectories ; then by selecting from each pair the trajectory corresponding to particle 
one we can construct an ensemble of one-particle trajectories. The statistics of the latter 
ensemble must agree with those generated by an explicit one-particle model, say (2.8). 
Note that this principle is not connected with the coincidence principle which says that 
if the particle separation, A ,  vanishes then the particles must move as one. Because our 
models are constructed on the basis of separation greater than q,  no matter how small 
7 (i.e. how large Re) the particles will separate according to inertial-range velocities and 
will always move apart significantly in a finite time. 

Thomson (1990) recognized the importance of two-to-one reduction but did not 
address the issue in great depth ; here, however, we derive useful constraints according 
to that principle. Thomson (1990) chose to examine in detail only the properties of the 
mean-square velocity fluctuation. Figure 3 compares the one-particle velocity- 
component variance calculated from the two models (4.2a) and (4.3) with the exact 
one-particle velocity-component variance, a constant value CT'. It can be seen that the 
model corresponding to (4.2a) shows a systematic deviation from the correct value, 
whereas the model corresponding to (4.3) has deviations which are of the order of the 
expected errors due to computer simulation (bounded by the dashed lines). Here, the 
standard error is approximately f n2(2/N)4 where N is 20000; then 0 . 0 2 ~ ~ '  is a 95 % 
confidence level. Similar results apply to the respective one-particle displacements 
(figure 4). Again the two-to-one results obtained numerically for model (4.3) are rather 
good and the results for model ( 4 . 2 ~ )  less so. The exact result in figure 4 follows from 
(2.9). Thus these results indicate that some models perform better than others, as 
judged by one-particle statistics. 

The two-to-one reduction principle can be applied to many different statistics, the 
Lagrangian velocity variance being simply one example. In this section, however, the 
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(.2> 
L2 

QQQQG Model (4.3) 
4BpM Model ( 4 . 2 ~ )  
- Exact C0=4 

1 2 3 4 

tlr, 

FIGURE 4. One-particle mean-square single-component displacement, (x’) = $((x, - xOl)’) ,  is shown 
for thc stochastic simulations of figure 1, and compared with the exact one-particle solution from 
(2.9). 

main emphasis is on two Eulerian constraints: (6 .Q which says that the ‘acceleration’ 
of particle one, conditioned on the velocity of particle one at some instant, is the same 
regardless of whether it is calculated from a one- or two-particle model; and (6.10), 
which is concerned with the acceleration conditioned on the velocity of a second 
particle a fixed distance away. The latter constraint is shown to depend explicitly upon 
the Navier-Stokes equations. 

The rationale for stressing these constraints over any others, and in particular over 
the velocity variance, is twofold. Firstly, only Eulerian constraints lead to manageable 
mathematical analysis, and, secondly, the ‘ accelerations ’ arise naturally at the lowest 
non-trivial order in a small-time expansion of Lagrangian behaviour. 

The remainder of this section furnishes the details and may be studied selectively. 
The essential results are (6.8) and (6.10) although the derivation of (6.12) from (6.10) 
with the accompanying use of the Navier Stokes equations is also crucial. It must be 
stressed that these results are for general PE and also for fully general forms of the 
stochastic models. 

Consider the general two-particle probability distribution 

PY(uI x, t )  = J p2 PL(u, x, t ;  u,, x,,, to)  PE(uo; x,, to) Y(x,) d6 uo d6 x0 (6.1) 

representing the statistics of particle pairs initially distributed in space according to 
J - ~  Y(x) = J - ~  P(x(’)) P(x@)). The normalization factor J, where 

S 
J = [p(x(”) d3x(’), 

requires that 9 is suitably integrable. Note that the Eulerian p.d.f. is recovered from 
the special limit where is a uniform distribution and the Lagrangian p.d.f. 
corresponds to the case where is a 8-function. However, here we assume that cp is 
suitably smooth (with arbitrarily many derivatives existing and bounded) so that 
Taylor-series expansions of (6.1) are useful. 

A fundamental property of Py is that it reduces to a one-particle p.d.f. on integration 
over u(‘) and x@), i.e. 

P<,(u, x, t )  dW2’ d3x(*’ = P-(u“), Y dl’, t )  J. 



84 M. S. Borgas and B. L. Sawford 

Consequently, one-particle statistics calculated from the two-particle p.d.f. are identical 
with those calculated from the one-particle p.d.f. 

Nou7 (6.2) must hold for any sensible model p.d.f. It can be shown that any smooth 
solution to the two-particle Fokker-Planck equation is a well-defined p.d.f. in the sense 
that when integrated as in (6.2) it produces a function with the properties of a one- 
particle p.d.f. In addition, we further require that the one-particle p.d.f. be a solution 
of the one-particle Fokker-Planck equation (2.4) under the appropriate initial 
conditions. In this way we can ensure that one-particle statistics calculated from the 
two-particle model are identical to those calculated from the one-particle model. We 
refer to this requirement as the two-to-one reduction property. Clearly, since the model 
two-particle p.d.f. is a function of a, this property constrains the form of a(u, x, t). 

We consider, then, a p.d.f. Pr satisfying the Fokker-Planck equation which we write 
as 

with the operator 9 given by 

with repeated indices meaning summation for j = 1-6. Henceforth we consider only 
stationary turbulence, so PE(u; x, t )  = PE(u;x), with 9 { P E }  = 0. 

According to our two-to-one reduction property. Pq in (6.2) satisfies a Fok- 
ker-Planck equation like (6.3), but with an operator 9’ given by (6.4) for an 
appropriate three-dimensional one-particle a-vector, i.e. (2.5) with 9,  = 0 and with 
summation of repeated indices only from 1 to 3. Let this one-particle a-vector be 
denoted by Z(u(’)) (for particle one say). 

At the initial instant, t = to, P, = J - ~  PE(u; A ,  to), and with a corresponding result for 
P p ,  (6.2) reduces to 

PE(u; d) Y(x) d W ’  d’d2) = PE(u(l) ; dl)) cY7(x(1)) 6 ,  (6.5) I 
where PE under the integral sign, as is indicated by the arguments, refers to the two- 
point form. The Eulerian equation, (6.5), can be satisfied identically because we are free 
to construct the Eulerian probability distributions appropriately. Nevertheless, it 
remains to be shown that, for any particular choice of a (in the two-particle model), 
the Lagrangian reduction (6.2) occurs properly. This difficult problem can be tackled 
by expanding the probability distributions in a Taylor series about t ,  while keeping u 
and x fixed. The reason is that the statistics of the initial state are known and therefore 
we may explicitly calculate the terms that arise in the expansion. For instance, 
considering the two-particle statistics we have 

The time derivatives in (6.6) may be evaluated from the Fokker-Planck equation in 
terms of PE and Y ( x ) .  Thus it is possible to successively calculate terms of O((t-  Qn) 
for larger and larger n on the left-hand side of (6.2).The right-hand side of (6.2) can 
similarly be expanded in a Taylor series in t - t,, which is like (6.6) except that one- 
particle quantities are used. Thus we have an established hierarchy of constraints by 
equating powers of t - t , .  
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Consider the O(t - to) terms. 'The result for the first-order time derivative is 

Notice that this result depends upon 2?{PE) vanishing. Substitution into the left-hand 
side of (6.2) leads to the term 

The notation ( I dl)) indicates an Eulerian ensemble average over u ( ~ )  with the velocity 
at x(I) fixed (equal to &)I. Following an application of Green's theorem,? i.e. 

the integral on the right-hand side vanishes by continuity (since ( 1 ) and 2/2xj2) 
commute). The residual term, 

is identical with the O(t - to) Taylor series expansion of the right-hand side of (6.2), i.e. 
(6.2) is an identity at O(t-to). 

Higher orders become increasingly complex algebraically, but the principle is the 
same. The O ( ( j - t J 2 )  terms lead to two new (vector) constraints for a :  

(6.8) 

which is independent of x(') (and dl)) and 

( u ; l )  1 *(I)) = C(*(I)) = - 1 1 u( l )  

(Q:') I U ( l ) )  = !i?%+--- ( u y  $1 I u(1)) 

L 2 )  

(6.9) 
? 

aX;z) 

for any !P! such that ?!Yt/2.x~') = 0. 
Equation (6.8) follows directly from the physical concept of conditioned acceleration 

of a particle and may be arrived at without our elaborate expansion procedure and 
indeed appears to be the obvious two-to-one constraint from direct inspection of the 
Fokker-Planck equation, On the other hand, interpretation of (6.9) is less obvious but 
apparently has equal importance for the correct two-to-one reduction of the 
probability. However, it also has a physical interpretation when we identify (a!') I u( ' ) )  
with the acceleration of particle two's conditioned velocity : 

The following kinematic relationship can then be derived : 

t To apply Green's theorem we need to make some assumptions about the behaviour of the 
functions at 'infinity'; however, it is always possible to restrict the class of functions from which 9' 
is drawn so that the conditions are satisfied. 
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provided that the separation of points is such that d 9 q which is always true in the 
present context. This means that (6.10) is an inertial-range quantity when d 9 q, and 
in particular the velocity increments similarly conditioned, i.e. 

(uy(t’)-u:2’(t) I u‘l’(f)) (t’ > t )  

vary with inertial-range timescales rather than t, = ( c / v ) ~ ,  which would be the shortest 
relevant timescale for one-particle statistics. Thus with 

(6.11) 

(and therefore 3Yt/8.x:‘) = 0) the two-to-one reduction is correct at O((r- tJ2).  Note 
that, since the time derivative and conditional average do not commute, stationarity 
does not necessarily imply that !Pf vanishes. This is because PE is a two-point (therefore 
spatial derivatives commute), not a two-time, p.d.f. Models that satisfy (6.9) with !Pi 
different from (6.1 1) are not reasonable models of fluid-particle accelerations, but are 
acceptable statistical models purely on the two-to-one reduction basis. Since we are 
concerned here with models of fluid-flow turbulence we shall insist upon (6.1 1) and not 
consider any more general models. 

Although the constraints (6.8) and (6.10) can be arrived at by evaluating the 
appropriate acceleration statistics directly, the expansion procedure set out here shows 
the importance of such constraints in ensuring the proper two-to-one reduction, and 
furthermore generates and identifies a hierarchy of constraints in a systematic way. 

The Eulerian distribution, PE, allows the computation of the spatial derivative of the 
conditional average, but not the time derivative. This term could be written down if we 
had two-point and two-time Eulerian statistics, but we assume only the former. 
However, the calculation of(6.1 I )  is implicit when we use the Navier- Stokes equations 
(conditionally averaged) to substitute for the right-hand side of (6.10) so that 

where all the terms on the right-hand side can be determined purely from the 
knowledge of PE and prescribed external forcing statistics (properties of f ) .  For 
example, the viscous-stress term may be evaluated for our Gaussian p.d.f. as 

which vanishes as v + O  (Re+m) for fixed A .  Thus the principle contribution to the 
right-hand side of (6.12) comes from the pressure gradient and external forcing term. 
These terms will be considered in more detail later. 

although the analysis is rather lengthy. We prefer to concentrate on those constraints 
already listed in this paper. However, it is appropriate here to briefly reconsider the 
numerical results given in figures 3 and 4 for the one-particle statistics generated by 
models ( 4 . 2 ~ )  and (4.3). The failure to reproduce the correct one-particle velocity 
variance in particular is a consequence of the general two- to-one reduction violation. 
For small times, Thomson (1990) shows that model (4.3) behaves like 

Similarly to the O(t- t,) and O((t-  to)* terms, more constraints arise at O((t-  

(ui u i )  = ~ C ~ ~ - ( T * ( A ~ F ( A )  (2~fF’ (A) - t5F(A) ) ) ,= ,~ ( t -  to)‘+ O((t-t,J3), (6.13) 

where I; = P ( ( f - g )  and the coefficient of the ( t -  tJ2 term is not identically zero. 
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Clearly, model (4.3) then violates two-to-one reduction. In general, (6.13) may be 
written as 

(plus higher-order terms) so that setting the coefficient equal to zero may be regarded 
as a constraint on a. Manipulation of this expansion using the fact that PE satisfies the 
two-particle Fokker-Planck equation (cf. (2.4)) gives the simpler expression 

a (6.14) 

which is linear in the unknown vector a. In general, the models violate the reduction 
at second order in time increment. However, when principles (6.8) and (6.12) are 
satisfied, it is shown in that Appendix B that the reduction of one-particle velocity 
variance occurs correctly in the special case that PE is Gaussian and for quadratic-form 
a. Thus, principles (6.8) and (6.12) are the fundamental two-to-one constraints at 
second order in time increment. 

1 A=A,  
(u iu i> = 6 ~ ' + 2  - ( u , u ~ u , )  (t-tt,)'+ ..., 

iax, 

7. Implementation of two-to-one constraints 
In this section, we explore the possibility that the general quadratic solution derived 

in $ 5  may be constrained by, and satisfy, the two-to-one constraints (6.8) and (6.12). 
This of course specializes the results to Gaussian PE, and gives the main results that: 
first, (6.8) provides one linear algebraic equation reducing the five unknown functions 
of 5 3 to four; while, secondly, (6.12) furnishes a further three relations finally giving 
a family depending on only one function of A .  Once again the technical details can be 
ignored at  a first reading. The critical result is (7.6), which is the third-order tensor in 
the quadratic-form model and which is fully determined except for the function ~ ( d )  
which is shown explicitly. Calculations are then undertaken with this reduced class of 
models with an emphasis on inertial-range properties. It is shown that a new model, 
exists which is as good as (4.3) for predicting constant cr2, but has additional theoretical 
underpinning. Remarkably, the relative dispersion results differ modestly between (4.3) 
and the new model which suggests that the behaviour of (4.3) is robust and that the new 
constraint (6.12) (leading to (7.5) and thence to (7.6)) is of limited practical importance. 
On the other hand, if we ignore the behaviour of 02, then very large variations of 
relative dispersion can occur even within the class of highly constrained quadratic-form, 
models. 

The standard technical procedure for examining two-to-one reductions, given that 
PE is Gaussian and the a vector is a quadratic form in the variable u, is to make the 
substitution 

which defines a new dummy integration variable in the averages over u@), < (with 
dimensions of velocity). The tensor fiiaj,, which depends upon A ,  is prescribed by 

and the first two-to-one constraint (6.8) takes the form 

u p  = piry  24;;) + &,, (7.1) 

'figv ~9.,,,, = h',, - pi ,k ,  pWj' ; 

V i'. 
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It is difficult to make any analytical progress for anything but the simple quadratic- 

(7.2a) 

y$k. + yi”;,,. -yyj,L,pl,k, - yi.l,m./+j,pm.li. !2) = 0 ,  (7.2 b)  

It can be shown by using either the solenoidal property (5 .3)  or the zero-mean 
acceleration constraint when averaged over dl’, 

ri = - ( T z y . .  ~ r l  

that (7.2~1) is a consequence of (7.2b). In general, (7.2b) corresponds to three scalar 

form case for which the relevant results are 

ri’ = v*?l‘j’k’‘( l a )  (j j’k‘-Pj’l’P/,‘k’), vj,,j, and k ,  

L3k I k ,  

equations: 

B’1’  + 2@’3’- 2 g B  { Z j  = 0 .  

and Cili +jet31 +g~ i3)  -fgc{2! = 0, 

where the functions involve the modifications, z”, @), BZi, “zlr and f i j 3 \ ,  according 
to the definition (5.7) of 8. These equations apply generally to quadratic-form 
solutions, including both (4.2a) and (4.3). However, from the symmetry constraints 
(54, they are not all independent and a single equation governs this two-to-one 

(7.3) 
Thus the two-to-one reduction for a is non-trivial since it constrains the possible 

quadratic-form modifications ; of the five arbitrary functions identified above only four 
are ‘independent’. Note that both solutions ( 4 . 2 ~ )  and (4.3) satisfy (7.3). 

We now consider the second constraint, (6.12). By the same procedures as above we 
find that (6.12) requires 

1 21 
p adi, 

y;?),. + y;,;,k,pl,,, $4‘  - y$il, PI.&“’ - yk?j,,. prnak, = q?#) +j&(A) (7.4) 

where q T k , ( A )  is related to the conditional pressure expectation which is determined 
solely from the Navier--Stokes equations and PE, at least in the inertial range where we 
neglect the forcing (represented here byufi,jrhm,(A)). This result, derived in Appendix A for 
the Gaussian form (3.7) for P,, is 

(p I dl)) = q , ( A )  u;%dp + C r z  j@). 

q k ( 4  = ( jl - #%) -p- + #2 8jT(, 

Isotropy of the turbulence further requires that 

A,  A ,  

where the functions and j 3  are listed in Appendix A. 
The basis for the quadratic-form assumption can now be seen to depend essentially 

upon the Gaussian form for PE, which implies through the pressure-gradient term that 
the conditional acceleration, (d2) I u(lj), is a quadratic form with respect to the 
velocity variable: 

A .  
3 A  

(a;*) I u( ’ ) )  = Aijk uJ(1)u;p + rz #’ 1, 
where 
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Similarly, using the kinematic condition (6. lo), but ignoring the time derivative, also 
yields quadratic forms in u(l) for (a@) I u( ' ) ) .  It therefore seems reasonable to examine 
quadratic forms for ( W ) / ? t  I dl)) as well. This result is some way short of proving the 
absolute necessity of a quadratic form in the full velocity u when the Eulerian p.d.f. 
is Gaussian, but it supports the examination of quadratic forms as an important 
family of models. Novikov's (1963) model is linear in u and hence is consistent 
with the quadratic form for ( o ~ * ) ~ u ( ~ ) )  only for the trivial and unrealistic case that 

= ,h2 = ,h3 = 0, i.e. when the spatial structure of the Eulerian field is ignored. 
The constraint (7.4), apart from the novel right-hand side, bears a remarkable 

similarity to the corresponding two-to-one reduction principle (7.2h). However, the 
new equation represents three additional constraints on the formulation of the 
stochastic models because the left-hand side is characterized by three scalar functions 
for the $-symmetric isotropic form of Arlk .  Thus (7.4) is equivalent to the scalar 
equations 

(1 - 

i?i"))+(l 

(1 -.f'2)( 1 +,f) J2' = - - ,hi, 
P l l  

1 

P 
- /h;, ' (7.5) 

where the functions with tildes are the modifications (cf. (5.1)) to the reference solulion 
( 4 . 2 ~ )  in $4. Thus, unlike system (7.2b), (7.4) does not collapse into a single equation 
under the imposition of (5.8). However, because the general quadratic-form solution 
for a depends on four arbitrary functions since, using (7.3) we can reduce the five 
unknowns of $ 5  to four, it should, in principle, be possible to satisfy (7.5) (and hence 
(6.12)). Note that terms from ( 4 . 2 ~ )  do not contribute to (7.5) because ( u ( ~ ) ) u ( ~ ) )  
vanishes identically for that model. 

Briefly, we consider two of those models that have so far been examined: the 
reference model with yLlk given by ( 4 . 2 ~ ~ )  and Thomson's model (4.3). Both of these 
implicitly satisfy (7.3) so that there is no discrimination by that two-to-one reduction 
constraint. Figure 5 shows the calculated pressure-gradient coefficients ( f i ; ,  4; and 

-k2)  in the quadratic form (A 5 )  for the conditionally averaged pressure gradient. 
The solid lines mark the terms determined (in Appendix A) froin the Navier-Stokes 
equations. Now the reference model (4.20) is defined by 

- - A?% = @li = k{zL = C'2' = 01'3: = 0, 

Clearly this solution fails to satisfy (7.5) and in figure 5 the discrepancy is measured by 
the deviation of the solid lines from the A-axis. It is less clear, but nevertheless true, that 
when the modifications are given by (5.9) which defines model (4.3), system (7.5) is 
also violated. In figure 5, the implied pressure-gradient terms corresponding to (4.3) 
(the left-hand side of (7.5)) are represented by the dashed lines and thus the discrepancy 
is measured by the appropriate difference between the dashed and solid lines. In 
qualitative terms, this is at least as large as the former difference between model 
(4.2a) and the Navier-Stokes forms. Thus both models considered so far violate the 
two-to-one reduction. 

Solving (7.3) and (7.5) for modifications that do reduce properly is straightforward. 
Bearing in mind that there are four unknowns and three equations, the solution is not 
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FIGURE 5. Conditional pressure-gradient functions (coefficients in the quadratic form) as determined 
in Appendix A and shown by the solid lines. Model (4.3) represents the corresponding pressure 
gradients only approximately, as shown by the dashed lines. Model ( 4 . 2 ~ )  has pressure-gradient 
coefficients which vanish (and lie along the A-axis). 

unique, and the quadratic-form solution contains one arbitrary function of A .  It is 
possible to represent that solution in general. Suppose we have two solutions for 
constrained modifications: Yijk and Y&.. For instance, the first can be defined to have 

p1 = 0 - 

while the second solution can be defined to have 

@) = 3 2 1 ,  

both simply for convenience with no particular physical implications. Then a general 
quadratic-form solution satisfying both (7.3) and (7.5) is given by 

where y ( d )  is an arbitrary function of A .  The inertial-range properties of Lagrangian 
solutions corresponding to (7.6) depend more precisely on the form of v, so that when 

cp = ‘poA-4/3+p1 +v2 + ... (7 * 7 )  

the inertial-range properties are functions of the constant psO. If p? is more singular than 
(7.7) (as A + 0) then the stochastic-equation solutions cease to have Kolmogorov 
scaling properties in the inertial range. If p is less singular than (7.7) then the inertial- 
range properties are those of the reference model (4 .2~) .  In the computations examined 
here, we simply vary cpO and set Q ) ~  = p2 = 0. Note the latter two constants have more 
of a role for the larger scales ( A  z L), rather than in the inertial range, and therefore 
the nature of the forcing terms, which we have neglected, may influence the choice of 
vl and p2 in a more detailed study of the large scales. For the same reasons, it may be 
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FIGURE 6. Velocity-component variance, (u') = f(ui ui), for the new model (7.6), for a range of yo 
values in (7.7). The earlier simulations (figure 3) are also included. The solution with cp0 = -0.4 is 
approximately correct, as is (4.3) for this statistic. The other parameters are as in figure 1 .  

anticipated that v1 and v12 (and the forcing) control behaviour for large times rather 
than during the 'inertial-range' times. We also note that the terms ignored in (7.7) are 
anticipated to be suitably small in the large-d limit, i.e. (7.7) is not strictly a power 
series expansion in the parameter 4-2/3. 

In principle, solution (7.6) is more acceptable than either the reference model ( 4 . 2 ~ )  
or Thomson's model (4.3). However, in practice it was found that model (4.3) produced 
numerical simulations for the velocity-component variance (figure 3) and one-particle 
displacements (figure 4) which were very nearly correct. Model (7.6) can certainly do 
no better than this based on those criteria. Indeed, the numerical simulations for 
several solutions with differing values of cpo give a wide spectrum of velocity-variance 
results, which are shown in figure 6. Some solutions, despite satisfying more rigorous 
two-to-one constraints ((7.3) and (7.5)), have velocity fluctuations deviating by 
10-12 YO from g2.  Also shown on this figure are the results for a solution constrained 
simply by (6.9) with the !Pi all set to zero and which are similarly in error. However, 
it is apparent that by judicious choice of Q;", the velocity-component variance is 
adequately modelled in the inertial range (with less than I-2% deviations from c?). 
Likewise, these same conclusions and observations apply to one-particle dispersion 
statistics. 

It therefore seems that (7.6), as well as being an important theoretical concept, is a 
feasible constraint to implement in practice and gives a model that is more acceptable 
than either (4.3) or (4 .2~) .  
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FIGURE 7. Relative velocity fluctuations, (4~') = ( ( u ~ ~ ~ - ~ L ~ ~ ~ ) ~ )  where &) = u ( l ) -  uo etc., is 
shown for the simulations described in figure 6. The inertial range is emphasized. 

Relative-dispersion statistics from the new solutions are shown in figures 7 and 8 in 
which the inertial range is emphasized. The effect of varying T, is evident by the quasi- 
parallel shift of the curves in these figures, which implies the functional dependence 
%' = g(pi,) and @ = @(yo) of the inertial-range constants for velocity and displacement 
structure functions respectively. Now we note that the new solution with cpo = -0.4, 
which according to figure 6 is very nearly the 'best' solution based on the constancy 
of velocity variance, actually has inertial-range characteristics similar to those of model 
(4.3) (% 7.5 and @ z  1.8 when C, = 4). The results for the new model are V z 6 and 
@ z  1.3, i.e. slightly smaller numerical values than for model (4.3) but not as small as 
Fung et uZ.s (1991) results (which also imply larger Co). The differences for larger times 
(beyond the inertial range) are inconclusive because of the neglect of forcing terms. 
Thus in practical terms, model (4.3) and the more completely constrained model are 
not markedly different. The improved dynamics of the new model implies a reduction 
in the value of the constants from Thomson's model (4.3), in line with kinematic 
simulations, and perhaps a model which used more realistic (non-Gaussian) PE and 
more complex (non-quadratic form) a would follow this trend. 

8. The magnitude of C, and the diffusion limit 
There is considerable debate about the value of the universal constant C,, let alone 

the values of V and @. The value C, = 4 falls in the middle of the experimental 
estimates by Hanna (1981), but recent analysis (Sawford 1991) indicates that a higher 
value may be appropriate. Here we explore the effects of varying C, on the relative- 
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FIGURE 8. Mean-squarc relative displacement, ( A t )  = ((z.11) -c:?])~) where ZP = x(l) -xrl -uf) t  
etc., is shown for the parameters of figure 6, emphasizing the inertial range. 

dispersion inertial-range constant, %?(see (4.5)), for some of the quadratic-form models 
derived in @4 and 7. Figure 9 shows estimates of @ obtained numerically from the 
slope of plots of ( A 2 )  z %?f3 with log- log axes for several models. The diffusion limit, 
which corresponds to the limit C,,+x and is derived in Appendix C, and the line 
(e" = 2C, (for independent particles) are also shown. For large C, the numerical values 
for all models converge to the diffusion limit, confirming Thomson's (1987) theoretical 
analysis. However, the diffusion limit is a good approximation to relative dispersion 
(according to these quadratic models) only for C, 3 20, which is much larger than the 
accepted range C, - 2--7. In general, the quadratic models that we have examined 
diverge in their relative-dispersion predictions for small C,. However, over all the range 
of C, for which we have made calculations, Thomson's model (4.3) and the optimum 
two-to-one model (7.7) give similar relative-dispersion predictions in the inertial sub- 
range for moderate to large C,, but differ for smaller (probably less relevant) C,,. 

For C, < 2 relative dispersion according to both thesc models proceeds at a rate 
greater than that of independent particles (i.e. @> ZC,). This violates the inequality 
constraint derived by Borgas & Sawford (1991) who showed that the effect of 
correlation between the accelerations of the pair of particles is to reduce the relative 
dispersion. 

9. Conclusions 
In this paper we have shown explicitly that there is non-trivial non-uniqueness in 

two-particle Markovian stochastic models of dispersion, i.e. different models can be 
4 F L M  279 
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FIGURE 9. Inertial sub-range dispersion constant @as a function of C, for the reference model (4.20). 
Thomson’s model (4.3) and the new constrained model (7.6) with q0 = -0.4. The diffusion limit 
(Appendix C) and the independent-particle case are shown as solid lines. 

obtained for the same Eulerian velocity statistics and such models have different 
Lagrangian statistics. In particular, the inertial-range dispersion and velocity statistics 
depend on the model chosen. We have also shown that the one-particle velocity 
variance, which is a known Lagrangian statistic, is not adequately modelled by every 
model. 

A hierarchy of constraints has been developed so that two-particle statistics 
generated by the constrained stochastic models reduce to one-particle statistics when 
averaged over either one of the particles. The hierarchy is ordered by a power series in 
a time increment, at, from an initial instant where the particles have fixed separation 
A,.  These constraints have been considered to second order in at, and can be related 
to conditionally averaged Navier-Stokes equations. This represents a novel in- 
corporation of explicit mechanics for such stochastic models. Although the constraints 
that are derived here have simple physical interpretations, our procedure shows them 
to be related to two-to-one reduction in a rational way. 

The Navier-Stokes equations together with the Gaussian Eulerian statistics lead 
naturally to models which are quadratic in the particle velocities. A class of such 
quadratic-form models has been derived for isotropic homogeneous turbulence for 
Gaussian two-point (Eulerian) velocity statistics. When constrained only by symmetry 
and Thomson’s (1 987) well-mixed criterion, this class reduces to five unknown 
functions of A .  Thomson’s (1990) model is included in this class of models and 
calculations show that it generates the one-particle velocity variance to within the 
statistical sampling uncertainty despite having conditional accelerations inconsistent 
with the Navier-Stokes equations. 

The quadratic-form models, when additionally forced to satisfy the second-order 
two-to-one reduction constraints, reduce to a family dependcnt on only one unknown 
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function of d. Numerical simulations for times larger than which a truncated at-series 
expansion is accurate, have shown that not all of these constrained models generate 
satisfactory one-particle statistics. However, it is possible to choose the unknown 
function to optimize the model’s prediction of the one-particle velocity variance. The 
one-particle performance of this optimal model is comparable with Thornson’s (1990) 
two-particle model. The two-particle results from either Thomson’s model or the newly 
constructed quadratic model are similar, although the conditional accelerations for 
each model clearly differ. This suggests that the dispersion described by these two 
models is fairly robust. 

We have chosen the final unknown function in the class of quadratic models 
empirically (so that one-particle velocity variance and one-particle dispersion are 
approximately correct). In principle, further two-to-one reduction constraints (say at 
third order in d t )  would fix this arbitrariness. However, except in Novikov’s (1963) case 
of dual particle independence and for trivial two-point acceleration correlations, it is 
clear that there is insufficient freedom within quadratic solutions to impose all the 
constraints at higher order in St. 

A fully general analysis involves relaxation of both the assumption of Gaussian 
Eulerian statistics and the choice of quadratic drift terms. This seems formidable and 
perhaps unwarranted, especially because the newer more highly constrained model 
differs moderately from that of Thomson (1990) in quantities of practical interest. 

We examined the variation of inertial sub-range constant for relative dispersion, %!?, 
with the velocity-structure constant, C,, through numerical simulations for three 
models: the new model, Thomson’s model and the reference model. The new 
constrained model and Thomson’s model are similar across the range of C, values 
considered (1-20) and differ most significantly for small C,. However, there is a 
considerable difference between those two models and the reference model (by a factor 
of two or three in the physically meaningful range of C,). Although the reference model 
can be discounted because it violates the second-order constraints and also because its 
one-particle statistics are relatively poor, the large differences suggest that the small- 
scale structure (the inertial range in particular) is sensitive to model details. 
Furthermore, the effect of uncertainty in C, is probably at least as significant as the 
differences between models. 

Appendix A 
In this Appendix we consider the Eulerian conditional average, 8 = ( p ( ’ )  I u(l)) ,  which 

is the mean pressure at x + A given that the velocity at x is dl). @ is a function of both 
u(l) and d and can be determined from a Poisson equation (see Batchelor 1953): 

where V2@ = a2@/aAic?di. Equation (A 1) can be solved for @ provided that the 
tensor 

can be specified. This tensor can be determined directly from PE(u(’),u(’);d), and in 
particular for a Gaussian form of this probability distribution we have 

which is the form we shall use. The solution of (A 1) implies that 

(Uy-)U,!2)  I u(11) = piL p j m  uy’u;’ - (T2(Si j  - p i k  pkj), 

@(u(l), A )  = q j ( A )  U y ) u p  + a”(d), 
4-2 
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where q&l) = (# , (A)  - # z ~ ( A ) )  $+ #&A) tE,, and @(A)  = #@). 

The Poisson equation then reduces to a set of ordinary differential equations for the 
functions +zl, b2 and b3. The solutions so obtained are unique under the specification 
of the boundary condition at infinity, which is that the conditional pressure expectation 
vanishes for infinitely large separations. 

A t A  

The solution for the above conditions has 

+z =-I ,p/: @“’’ dt+lpdzS:  ( - lJf2 d t + 1  30p A-3 [ c4f”2 dt> 

r2  d[-;pod, / e-1f’2 d[-2 c 60P L3r t4y2 d( 

(A 2) 

(A 3 )  

0 

oc: 

A 0 

and 

For the calculation of particle two’s mean conditional acceleration we require the 
pressure gradient. Furthermore, we ignore the contribution from the viscous stress 
provided that A P (the Kolmogorov microscale) and we ignore any 
contribution from external forcing, i.e. we assume that the forcing at particle two’s 
position is independent of dl). In terms of our solutions the pressure gradient is 
expressed as 

where 

Because of the derivatives and combination of hl-+i2 in Atjk the numerical 
calculation of (A 5 )  only requires the computation of 

which we denote by f t ( A )  and Y:(A)  respectively. This, in general, is a numerical task 
and requires the parameterization of the structure functionfld). We shall use Durbin’s 
(1980) form (see also (3.3)), 

where 2 is a lengthscale. In this case we have 
f’(’) = - $2 2 4 - 1 / 3 ( 4 2  + 9 2)-.1/3 

and so the integrals may be expressed as 

and 
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The integrals in a non-dimensional form, 

can be tabulated, using a combination of both Simpson’s rule and asymptotic 
expansions, to more than sufficient accuracy. Thus it is feasible to implement the 
conditional acceleration constraints in the stochastic model. 

Appendix B 
The expansion for particle one’s velocity variance is 

where we are following the earlier conventions and have used (6.8). Using the 
representation of $5 ,  i.e. assuming Gaussian PE, we find that 

and a similar expression for the other part of (B 1). Finally, using the constraints (5.8) 
and (7.3,  gives that, for the coefficient of ( t - to)2 in (C 1) to vanish, we must have 

(1 -f”( 1 +f) kP21 = f.7, 
(1 -g2)(1 + f ) ( B ’ 1 ’ + 3 2 ’ )  = -L+f’, (B 3) 

-$( 1 -f)(Slr - BN) + (1 -Jk’) %2’- (f-g2) D ” / 3 )  = LJg -;gf‘. 

Now (B 3) is actually exactly the consequence of (6.9), with zero Y-vector. However, 
because of the gradient operator in (B I ) ,  a non-trivial divergence-free Y-vector will 
not alter the coefficient, so that (6.12) (or more properly (7.5)) will also imply that the 
one-particle velocity variance is constant at least to second order in t - to. 

Appendix C 
Thomson (1987) has shown that in the limit t ,  = 2cr2/C0 B +. 0, (2.1) has a diffusion 

limit in which particle position is Markovian. For a given flow (in which g2 and e are 
specified) it is appropriate to identify this diffusion limit with the limit C,+co. Thus 
we anticipate that this limit will determine the behaviour of the stochastic models under 
consideration here as C, is allowed to increase. 

1c e 
du. 1 2 g 2  = - - - ~ - . . ~ . d f + 4 ~ d t + ( C , e ) l ’ ~ d ~  23 3 

All of the models we have considered have been of the form 

(C 1) ( i= 1,2, ..., 6), 

where 4, is a quadratic function of u (see $4). Because of this quadratic behaviour, the 
diffusion limit is independent of the details of Qa, i.e. all of the models we consider have 
the same diffusion limit (Thomson 1987). For a Gaussian PE, this limit is 
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where the diffusivity tensor is given by 

M .  S. Borgas and B. L. Sayford 

and we recall that g2 A;' is the six-dimensional Eulerian velocity correlation tensor (see 
(3.6)) and is a function of A .  Using the block structure (3.1) to write X' in terms of one- 
point and two-point correlation tensors, and introducing the isotropic forms (3.1 a-c) 
and we can derive from (C 3 )  a diffusion equation for the particle separation, 

= x ( 2 1 - x ( ' )  
9 

The Fokker-Planck equation corresponding to (C 4) can be written 

(i = 1,2,3). 

(C 5 )  

and for inertial-range separations, (3.3) can be used to write (C 5)  as 

. (C6) 

For travel times within the inertial sub-range, i.e. for t ,  4 t 4 t,, the initial dependence 
on A,  disappears and P is a function only of the scalar separation. A similarity solution 
of (B 6) can then be found: 

V(d, t ; do, 0) - c2 ell3 (10 A l / S  t ;  ' 0 9  '1 + 4413 m y d ,  t ;  A,, 0') 
at GJ ad ad2 3 

then with 5 = A(4C2 e l i3 t /C)  -312 we have the time-dependent solution for A-statistics. 
Hence, in the diffusion limit, the mean-square separation in the inertial sub-range is 

C6 
(42) = %-€P (to 4 t 4 tL) .  

C;: 

Thus in this limit the inertial sub-range constant %?from (4.5) is given by 

- 1144C6 q$ = ___ 
81 C,3' 
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